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Abstract

We assess the accuracy of two steady-state temperature models, namely, Ross and

Faiman, in the context of photovoltaics (PV) systems integrated in vehicles. There-

fore, we present an analysis of irradiance and temperature data monitored on a PV

system on top of a vehicle. Next, we have modeled PV cell temperatures in this PV

system, representing onboard vehicle PV systems using the Ross and Faiman model.

These models could predict temperatures with a coefficient of determination (R2) in

the range of 0.61–0.88 for the Ross model and 0.63–0.93 for the Faiman model. It

was observed that the Ross and Faiman model have high errors when instantaneous

data are used but become more accurate when averaged to timesteps of greater than

1000–1500 s. The Faiman model's instantaneous response was independent of the

variations in the weather conditions, especially wind speed, due to a lack of thermal

capacitance term in the model. This study found that the power and energy yield cal-

culations were minimally affected by the errors in temperature predictions. However,

a transient model, which includes the thermal mass of the vehicle and PV modules, is

necessary for an accurate instantaneous temperature prediction of PV modules in

vehicle-integrated (VIPV) applications.
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1 | INTRODUCTION

Effects of temperature on the operation of conventional photovol-

taics (PV) applications in rack-mounted settings have been exten-

sively studied and reported.1,2 The increased operating temperature

of a PV module reduces the operating voltage and, hence, the out-

put power of the PV module, which is accounted for by various

temperature coefficients. For a typical silicon-based module, the

temperature coefficient of power is �0.35%/�C,3 which translates

to a power drop of 0.35% for a 1-degree increase in temperature.

Various modeling approaches have been reported to estimate the

PV module temperature in conventional PV applications, ranging

from first principles transient model based on the heat transfer

approach to steady state one-dimensional empirical approaches.4–7

Transient models describe the thermal system relatively better at

the cost of more computational power and input parameters. In
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contrast, the steady-state approach offers a trade-off with less com-

putational power and fewer input parameters at a relatively lower

accuracy.

Temperature similarly affects the performance of PV modules in

onboard vehicle applications, also known as vehicle-integrated PV

(VIPV). However, compared to a stationary PV installation, PV mod-

ules onboard vehicles, on the one hand, can rapidly cool down due to

the high headwind due to vehicle motion and, on the other hand,

strongly heat up during parking due to a lack of ventilation at their

rear. Since we are in the infancy of this onboard vehicle PV applica-

tion, we would like to understand how temperature evolves in such a

cyclic operation in two typical modes: driving and parking. Efforts

have been ongoing to study the temperature effects in both opera-

tion modes. The temperature effects on different PV technologies

during the parking phase using an experimental setup of a black box

with PV on top to replicate a vehicle cabin were studied in previous

studies.8,9 In their studies, Wheeler et al. utilized the collected data to

apply the steady-state temperature model proposed by King et al.,10

as documented in literature.8,9 The effects of temperature on the

silicon-based modules and their subsequent effect on the PV energy

yield in different climatic conditions are described in Yamaguchi

et al.11 In this work, Yamaguchi et al. conducted temperature mea-

surements utilizing a Toyota Prius and a Nissan van for their analy-

sis.11 The measured data are used to analyze the temperature rise in

VIPV applications and empirically determine the model parameters

described in King et al.10 The findings presented by Yamaguchi et al.

highlight a significant temperature-induced decrease in the power

output of VIPV modules, showing reductions of 16.6% and 31.9% for

scenarios in Nagoya and Yokohama, Japan, respectively.11 The effect

of forced convection on the temperature of a PV module on a vehicle

while driving was studied in Hayakawa et al.12 using an experimental

setup involving an actual vehicle. Parking a vehicle with onboard PV

under the sun will increase the cabin temperature, and the ability of

PV energy yield to supply the energy needed to cool the cabin is

addressed in Gaspar et al.13 The studies on temperature modeling of

onboard vehicle PV have yet to be comprehensive, with the question

of the best approach to perform such modeling being unanswered.

More temperature measurements on actual vehicles, in both the

driving and parking phase, are needed, along with suitable models to

describe temperature in such a dynamic system. We want to address

these aspects with a measurement campaign in Germany and use

steady-state temperature models to quantify their effectiveness in

this application.

The paper is organized as follows: Section 2 describes our data

monitoring setup and the monitored data. Section 3 introduces

two conventional steady-state PV temperature models, Ross6 and

Faiman,7 and describes parametrization approaches for the models

involved. Section 3 also describes the calculations performed to ana-

lyze the impact of model-predicted temperatures on the energy yield.

Section 4 presents the model parametrizations' results, accuracy, and

effect on energy yield. It also discusses their suitability for tempera-

ture modeling for onboard vehicle PV with recommendations for

future modeling work. Section 5 concludes the paper.

2 | EXPERIMENTAL

With this paper, we are furthering the research on the temperature

modeling of onboard vehicle PV using 1–3 s timestep measurements

of PV modules on a car's roof during the parking phase. Furthermore,

we measure irradiance, ambient temperature, and wind speed

surrounding the car. The monitoring setup used and the monitored

data are explained in the following subsections.

2.1 | Monitoring setup

The setup consists of two separate monitoring systems. System

1 monitors position, irradiance, ambient temperature, wind speed, and

direction. System 2 monitors temperatures inside the vehicle cabin

and the mini PV modules on the vehicle. Both measurement systems

can be seen in Figure 1. Sensors used in both systems are mentioned

in Table 1.

System 1 consists of sensors and a data logger mounted on an

aluminum frame, as shown in Figure 1. Irradiance sensors are

mounted on the left, right, up, and front sides. The upward-facing

sensor measures the global horizontal irradiation. The system samples

data from all the sensors simultaneously every 1–3 s.

System 2 focuses on temperature measurements in and on the

vehicle. We use a black Ford Fiesta for our temperature measure-

ments, as seen in Figure 1. Custom-designed mini PV modules with

embedded PT100 temperature sensors with a magnetic back are

attached to the vehicle's roof to simulate onboard vehicle PV. The

minimodules approximate VIPV conditions in which the PV modules

are in close contact with the vehicle body, and the system's heat

capacity is the combined heat capacity of the PV modules and the

vehicle. Four separate PT100s are also placed in the vehicle to

measure cabin temperature. We monitor the temperature from eight

different PT100s connected to a data logger in a four-wire configura-

tion sampled every second. Since we are just analyzing the suitability

of steady-state temperature models in this paper, we only use data

from one irradiance sensor, ambient temperature, wind speed, and

temperature of one minimodule.

2.2 | Monitored data

The two monitoring systems were deployed at the research center

parking place, with both systems being next to each other (see

Figure 1). The data were collected in June 2023 for nine weekdays in

a time window between 7:00 am and 6:00 pm. The monitored data

comprise clear sky, cloudy, and periodic shading conditions from sur-

rounding objects to simulate real parking scenarios. After processing

the data from the two monitoring systems, we are left with 122,000

complete measurements with a timestep of 1–3 s and a total

measurement duration of around 60 h. Figure 2 shows the measured

irradiance on the sky-facing sensor, ambient temperature, wind speed,

and temperature of one of the vehicle-mounted mini PV modules.

PATEL ET AL. 791

 1099159x, 2024, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pip.3832 by Forschungszentrum

 Jülich G
m

bH
 R

esearch C
enter, W

iley O
nline L

ibrary on [10/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3 | TEMPERATURE MODELING

The following subsections briefly introduce the models we investigate

and their parameterizing procedure.

3.1 | Ross model (NOCT model)

The Ross model represents a linear relationship between the differ-

ence of module and ambient temperature with the plane of array

(POA) irradiance,6 as seen in (1). This model is used to determine the

nominal operating cell temperature (NOCT) and was part of the old

IEC standard with the following conditions: 800 W/m2 irradiance,

20�C ambient temperature, 1 m/s wind speed, module tilt angle of

37 degrees, and open-air ventilation.

Tm ¼ Taþk�Gpoa, ð1Þ

where Tm =module temperature (�C), Ta = ambient temperature (�C),

k=heat loss coefficient (�Cm2/W), and Gpoa =plane of array irradi-

ance (W/m2).

TABLE 1 Measured variables, sensors used, and their accuracy.

Variable Description Sensor
Sensor
accuracy

Irradiance Irradiance sensor mounted on the aluminum frame

facing upwards (roof) (W/m2)

Si reference cell, Ingenieurbüro Mencke &

Tegtmeyer GmbH of type Si-RS485TC-T-MB

±0.4% to

±1.6%

Ambient

temperature

Sensor mounted on the aluminum frame at �2 m

height (�C)
Acoustic resonance sensor, FT Technologies Ltd. -

FT205EV

±2�C

Wind speed Sensor mounted on the aluminum frame at �2 m

height (m/s)

Acoustic resonance sensor, FT Technologies Ltd. -

FT205EV

±0.3 m/s

Module

temperature

Temperature sensor embedded in mini PV modules

(IBC cells) on the roof of the vehicle (�C)
Resistance temperature detectors (RTD), PT100 ±0.3�C to ±1�C

F IGURE 1 Monitoring system setup clockwise from top left: schematic of the minimodules on a vehicle roof, schematic of the irradiance
monitoring setup, a vehicle with PT100 sensors inside, and on the vehicle next to the irradiance measurement setup (highlighted red), and picture
of a minimodule with integrated PT100 temperature sensor.
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The constant k defines the thermal characteristic of a module and

is determined empirically by a first-order regression.

3.2 | Faiman model (NMOT model)

The Faiman model7 is an extension of the Ross model with consider-

ation for the wind speed to account for module cooling due to forced

convective heat transfer. The Faiman model determines the nominal

module operating temperature (NMOT) and is part of the newer IEC

standard.1 The model relationship is seen in (2).

Tm ¼ Taþ Gpoa

u0þu1�Ws
, ð2Þ

where Tm =module temperature (�C), Ta = ambient temperature (�C),

Gpoa =plane of array irradiance (W/m2), u0 = thermal loss coefficient

(W/m2�C), u1 = convective thermal loss coefficient (Ws/m3�C), and

Ws =wind speed (m/s).

We parameterize u0 and u1 using the data we measured by

applying first-order regression.

3.3 | Model parameterization

Before parameterization, the data need to be filtered per the recom-

mendations in the IEC standards. The filtering requirements are

slightly different for both models and are described in Muller et al.1

and are as follows:

For the Ross model, data with the following conditions were

rejected:

• Irradiance below 400 W/m2

• In a 10-min interval after the irradiance varied by more than 10%

from the maximum value to the minimum value recorded during

that 10 min period

• Wind speed outside the range of 1 m/s ± 0.75 m/s

• Ambient temperature outside the range 20�C ± 15�C.

For the Faiman model, data with the following conditions were

rejected:

• Irradiance below 400 W/m2

• In a 10-min interval after the irradiance varied by more than 10%

from the maximum value to the minimum value during the

preceding 10-min period

• In a 10-min interval from a deviation of the instantaneous wind

speed to below 0.25 m/s or gusts larger than + 200% from a

5-min running average

• When the 5-min running average was less than 1 m/s or greater

than 8 m/s.

We process the data before performing parameterization of both

models using three approaches: First, we use the respective IEC data

filtering guidelines for each model; second, we do not perform

filtering as per the guidelines and use all the data as is; and third, we

downsample (data-averaging) our data to logarithmically increasing

timesteps. No data are filtered out for the data-averaging approach,

F IGURE 2 Visualizations of the monitored data used in this paper. The y-axis of each subplot indicates the parameter visualized along with
respective units. The irradiance shown here is the one measured by the sky-facing sensor. The module temperature is shown from the
minimodule on the vehicle's front side.
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but the data fluctuations are reduced or removed depending on the

averaging time step. The results of these parameterization approaches

are presented in Section 4.

3.4 | Energy yield

Since energy yield is one of the most common metrics calculated to

assess system performance, we estimate it using the Ross and Faiman

modeled temperatures. This helps us understand how temperature

modeling errors lead to energy yield errors. We derive the energy

yield by integrating the module power calculated using the monitored

irradiance, ambient temperature, wind speed, minimodule tempera-

ture, and various modeled module temperatures. The energy yield

calculated using the measured minimodule temperature acts as a

reference value to estimate the error in yield calculations that stem

from the various modeled temperatures. The energy yield is calculated

for a single PV module (from the pvlib-python database) using the

CEC single diode model present in pvlib-python.14 The energy yield

results for various modeled temperatures are presented in Section 4.

4 | RESULTS

The temperature modeled by the Ross and the Faiman models using

various heat loss coefficients derived from different parametrization

approaches is presented. We assess the regression quality for all the

approaches using the coefficient of determination (R2) and the

standard error of regression (S). The accuracy of the modeled tempe-

ratures is also analyzed using the R2 metric. Furthermore, we present

the comparison of the modeled and reference energy yield. We also

discuss the suitability of the presented approaches and potential PV

temperature modeling approaches for vehicle applications.

4.1 | Temperature modeling

The parametrization results of the Ross and the Faiman model with

the measured data using various approaches are shown in Figure 3.

The first value on the X-axis of Figure 3 indicates the fit parameters

calculated using the original timestep data (OTS). In contrast, the sub-

sequent values are calculated using data that was averaged using loga-

rithmically increasing time steps up to 3600 s (1 h) without filtering

out any data. The fitting was also performed on filtered data using the

respective IEC guidelines for both models mentioned in Section 3.

The Ross model coefficient seen in Figure 3 is small for the smal-

ler timesteps but increases as the data are downsampled at a larger

timestep. As the data are averaged over a more significant time step,

the system's dynamics get smoothed out, leading to a higher heat loss

coefficient where the model can explain the temperature variance

better. From around the 1000–1500 s time step, the coefficient is

stable at approximately 0.0485�Cm2/W. The heat loss coefficient

calculated per the IEC guidelines, about 0.052�Cm2/W, is shown as a

horizontal green line, relatively higher than the other variants.

The Faiman model coefficients u0 and u1 are also shown in

Figure 3, where the u1 coefficient represents forced convective heat

losses. For the smaller time step, all the heat loss is explained by the

u0 coefficient, with the u1 coefficient only accounting for a minor

fraction. However, as the data are averaged, the u1 coefficient

becomes impactful, indicating a cooling effect due to forced convec-

tion. After around 1000–1500 s, the u0 and u1 coefficients converge.

This indicates that the thermal time constant of this system is around

1000–1500 s. The Faiman model coefficients determined using the

IEC guidelines are shown as horizontal yellow lines, solid and dashed

for u0 and u1, respectively.

Figure 4 shows the quality of regressions for the Ross model on

the left side for some of the timesteps. For the Ross model, the fit

quality is indicated by the relationship of (Tm � Ta) and the GPOA.

F IGURE 3 Fitting coefficients for the Ross and the Faiman model. The X-axis represents logarithmic time steps used to average the data,
with the first value being the original time step. The horizontal lines in both figures indicate the heat loss coefficients derived using the respective
IEC filtering guidelines.
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There is a direct correlation between the dependent and the indepen-

dent variable. The R2 of the fit is in the range of 0.56–0.87, whereas

the standard error of regression (S) is in the range of 4.28–7.88�C. For

the original time step (OTS) variant, it is clear from the scatter that the

model has difficulty explaining all the variance due to the highly

dynamic conditions. However, as the time step is averaged, the scat-

ter becomes focused as the conditions reach a steady state. However,

for the IEC version, because most of the data is filtered out to remove

abrupt fluctuations, the fit quality suffers, and the model performs

worse than the time-averaged version of 3600 s.

Figure 4 also shows the quality of regressions for the Faiman

model on the right side for some of the timesteps. For the

Faiman model, the fit quality is indicated by the GPOA/(Tm � Ta) and

wind speed correlation. There is minimal correlation between the

dependent and independent variables of the Faiman model. This is

indicated by the fit's R2 value, which ranges from 0.02 to 0.47.

However, the correlation is visible as the data are averaged over the

1800 s time step. This is why the u1 values for the Faiman model are

very low for the smaller timesteps and because the cooling effect of

the wind is not visible in near-instantaneous data due to the system's

thermal mass delaying the effect. Meanwhile, when the data are aver-

aged over a longer time step, the cooling effect becomes visible as the

longer time step accounts for the thermal time constant attributable

to the system's thermal mass. Most of the data is filtered out for the

model fit using the IEC guidelines, leading to skewed coefficients.

The IEC guidelines imply that the thermal time constants for a

stationery rack-mounted PV system are 10 min; hence, the require-

ment of filtering out data in a 10-min window. The time constant for

vehicle-mounted PV systems is longer than 10 min, making this filter-

ing method ineffective. So, data in a larger time window need to be

thrown away, or it should be averaged. The results presented here

suggest that averaging over longer times is a better solution for using

a steady-state model for onboard vehicle PV systems.

Figure 5 shows the scatter density plots of the modeled and mea-

sured temperature for three parametrization approaches: original time

step (OTS) and downsampled variants at 915 and 3600 s. The OTS

variant shows a high scatter, showing that the model cannot fully

describe the thermal behaviors of the system due to high system

dynamics and the system's thermal capacities, which can be seen as

distinct trail lines in the scatter plot. The scatter becomes more

F IGURE 4 Quality of regression fits for the Ross and Faiman models using the data in original (OTS), 915 s, 3600 s time step and the IEC
filtered version. The legend indicates the respective calculated heat loss coefficients along with the R2 and S of the regression fits.
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concentrated as we average the data before performing the parame-

trization, as seen in the plots for 915 and 3600 s. Downsampling

reduces the dynamic characteristics of the data by averaging them

out. It is expected that the steady-state models will be better able to

explain the thermal behavior in less dynamic conditions.

This can also be seen in Figure 6, which shows the R2 for predic-

tion accuracy of the Ross and the Faiman models for different

parameterization approaches. The models perform better for time

steps 1000 s and higher, with the Faiman model performing better

overall. It is important to note that the R2 values in Figure 6 are

comparable between Ross and Faiman, as both describe the module

temperature. However, in Figure 4, the R2 for Ross is for (Tm � Ta),

and for Faiman, it describes G/(Tm �Ta). As the standard deviation of

these quantities will differ, so does the R2 value. Hence, for Figure 4,

the R2 values between the Ross and Faiman models cannot be

compared.

The R2 values for downsampled variants are better than the ones

for IEC-filtered variants, as shown by the horizontal lines in Figure 6.

This can be attributed to the fact that the data is kept while averaging

instead of being thrown away in the IEC filtering approach. However,

it is averaged out and still part of the parametrization approach,

preserving more detail.

4.2 | Energy yield modeling

The power output was modeled using different modeled temperatures

and compared to a reference power output calculated using the

monitored temperature for a single PV module. The power output is

relatively independent of the modeled temperature errors, with R2

values close to 1 for all the modeled variants compared to the calcu-

lated reference power. We calculated the energy yield by integrating

these power outputs for various cases. The relative energy yield, that

is, the ratio of calculated energy yield to reference energy yields, is

shown in Figure 7. We do not show the relative energy yield for the

IEC-filtered data cases as it would be highly inaccurate to calculate

F IGURE 5 Modeled vs. measured temperature using the fitting parameters from OTS, 915 s, and 3600 s data. The color indicates the point
density, with bluish being lower and yellowish being higher. As the timestep is averaged, the model performance becomes better. For the OTS
variants, the visible trails indicate the thermal time constants involved in the system.
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the energy yield for such a time series where much of the data is

missing due to the filtering process. The relative energy yield shows

us that energy yield in all cases has an error of ±2% or less in most

cases. This highlights that, in this particular case, the accuracy of the

energy yield is only mildly affected by the errors in the temperature

prediction. However, it is essential to note that this calculation was

done for a single module and for a time window of less than 10 days

to highlight the impact of temperature on the system's energy yield.

Overall, it can be seen that the Ross and the Faiman models show

high errors in predicting instantaneous temperatures, with the magni-

tude of these errors decreasing as the data are downsampled to

1000–1500 s or longer, with the Faiman model performing relatively

better in all considered cases. The primary source of errors in

predicting the instantaneous temperatures is the need to consider the

thermal capacity of the module as well as the vehicle, which forms a

complete system in case of vehicle onboard applications. However, it

is also noticeable that errors in temperature prediction do not lead to

drastic errors in module power calculations and, hence, the system's

energy yield. Using these steady-state temperature models for energy

yield predictions over an extended period should be acceptable but is

not necessarily accurate enough when the scope changes to instanta-

neous temperature prediction. Accurate instantaneous temperature

prediction (1 s timestep) is essential in optimal system design when

various electronic components like optimizers and inverters are part

of the system.15,16 The data collected as a part of this paper will help

design transient temperature models that account for the thermal

capacity of the module and the vehicle and will be part of a future

study.

F IGURE 7 Ratio of predicted energy yield with the reference energy yield. For all cases, there is an error of ± 2% or less in energy prediction
using various predicted temperatures. IEC-filtered cases are deliberately not shown as estimating energy yield for a time series where most data is
filtered out would be difficult.

F IGURE 6 R2 for the predicted temperatures using coefficients determined by various downsampled data variants. Fitting using averaged
data at greater than 1000–1500 s timestep performs better (even better than the IEC guidelines, shown as horizontal lines in the respective
figures).
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5 | CONCLUSION

We conducted measurements of temperature and irradiance on a PV

module integrated on a vehicle's roof to study their temperature

behavior. The measurements were conducted using two specially

designed systems with 1–3 s sampling rate for around 60 h. As a first

order of measure, we checked the suitability of steady state models,

namely, Ross and Faiman, in predicting the temperature in such appli-

cations. We used various approaches to parametrize the models. We

calculated the k coefficient for the Ross model in the range of 0.045–

0.052�Cm2/W and the u0 and u1 coefficients for the Faiman model in

the range of 12.5–22 W/m2�C and 0–6 Ws/m3�C, respectively. It was

determined that due to a lack of thermal capacitance term in the Fai-

man model, the instantaneous response of the model was indepen-

dent of the effect of forced convective cooling. We calculated the R2

values to determine the accuracy of these models, which are in the

range of 0.61–0.88 for the Ross model and 0.63–0.93 for the Faiman

model, with the Faiman model having an overall better performance.

However, the higher values of R2 for these models are possible only

when the data are averaged, indicating that the steady-state models

perform better with data at a timestep of around 1000–1500 s or

more, which is expected since both models have been developed for

simulating stationary PV systems with hourly data resolution. We also

checked the impact of the errors in temperature prediction on mod-

eled power output. The R2 values of comparing modeled power with

the reference power were close to 1, indicating that temperature pre-

diction errors have minimal impact on the power prediction. When

using these predicted temperatures, energy yield was also calculated

to be in the ±2% range compared to the reference value. We conclude

that the considered temperature models perform better at time steps

greater than 1000–1500 s. Their impact on power/energy yield calcu-

lations is minimal in instantaneous or downsampled cases. However, a

transient model with the thermal mass of the vehicle and the module

is necessary for an accurate instantaneous temperature prediction of

PV modules onboard a vehicle. This can be fulfilled in future work by

the collected data described in this paper.
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